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SUMMARY 

A new numerical method has been developed for the analysis of unsteady free surface flow problems. The 
problem under consideration is formulated mathematically as a two-dimensional non-linear initial bound- 
ary value problem with unknown quantities of a velocity potential and a free surface profile. The basic 
equations are discretized spacewise with a boundary element method and timewise with a truncated 
forward-time Taylor series. The key feature of the present paper lies in the method used to compute the time 
derivatives of the unknown quantities in the Taylor series. 

The use of the Taylor series expansion has enabled us to employ a variable time-stepping method. The size 
of time increment is determined at each time step so that the remainders of the truncated Taylor series 
should be equal to a given small error limit. Such a variable time-stepping technique has made a great 
contribution to numerically stable computations. 

A wave-making problem in a two-dimensional rectangular water tank has been analysed. The computa- 
tional accuracy has been verified by comparing the present numerical results with available experimental 
data. Good agreement is obtained. 
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INTRODUCTION 

The continuing development of high-speed digital computers has encouraged and enabled us to 
analyze numerically complicated flow phenomena of fluids. This is particularly true of free surface 
flow problems. Unsteady motions of a fluid with free surfaces are formulated mathematically as 
non-linear initial boundary value problems. Numerical and analytical solutions of the problem 
have been difficult to achieve for two main reasons: (1)  the position of the free surface varies with 
time in a manner not known a priori and must be found as a part of the solutions; (2) the 
boundary conditions on the free surface are non-linear equations. 

When assuming a fluid to be incompressible and inviscid and a flow to be irrotational, the fluid 
flow is governed by the Laplace equation expressed in terms of a velocity potential. It is well 
known that the solution of the Laplace equation is expressed in terms of boundary integrals of a 
harmonic function and its normal derivative. Using this form of solution, a two-dimensional flow 
problem, for example, is transformed into a one-dimensional problem governed by a boundary 
integral equation of the Fredholm type, and the dimension of the problem can be reduced by one. 
This is a great advantage in reducing computer memory and computing time requirements. 
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Such a solution technique, called a boundary element method, has been successfully applied to 
a number of two-dimensional free surface flow problems, including overturning of water 
waves,', liquid sloshing in tanks subjected to forced  oscillation^^.^ and wave-making 
 problem^.'.^ Although the methods proposed so far are well designed and are powerful tools for 
some kinds of free surface flows, most of them are poor in numerical stability for large distortions 
or rapid movements of free surfaces. 

In 1984, Dold and Peregrine7 proposed a simple and cost-effective method based on the 
complex variable boundary element method. They used forward-time Taylor series expansions in 
a time-stepping procedure and realized stable computations in the analysis of wave-breaking 
phenomena. Their numerical method, however, has been specialized under some assumptions for 
the purpose of the numerical simulation of breaking waves. Furthermore, the use of complex 
variables restricts the method to two-dimensional problems. 

In this paper the original method of Dold et al. has been extended and modified. The present 
method can be applied to the analysis of various types of free surface flow problems in water 
tanks. Although our final goal is to construct a numerical method for three-dimensional free 
surface flows, the focus of the present paper is on two-dimensional flows in order to verify the 
applicability of the proposed method. 

MATHEMATICAL DESCRIPTION OF A FREE SUREACE FLOW PROBLEM 

To show the detail of the proposed method, we construct here an example of an unsteady free 
surface flow problem. 

Consider a wave generation problems in the two-dimensional water tank shown in Figure 1. 
The tank has a width 2W and is filled with water to a constant height h in the stationary 
condition. A wave generator of the piston type with a width 2b is set at the centre of the tank 
bottom and is permitted to move upwards according to the displacement function 

(1)  
A rectangular Cartesian co-ordinate system 0-xy is fixed to the tank in such a manner that 

the x-axis coincides with the stationary free surface and the y-axis coincides with the centreline of 
the tank. Since the fluid motion caused by the wave generator will be symmetric, the fluid region 
x 2 0 is chosen as the solution domain. The fluid is assumed to be inviscid and incompressible, 

Yp(t)  = Yo[l - exp( - at) ]  for t > 0. 

Y 
1 

r3 

ypw r2 

Figure 1. A two-dimensional water tank with a wave generator 
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and the flow to be irrotational. These assumptions permit us to introduce the velocity potential 
+(x, y ,  t )  defined by 

- = v.  84 84 
ax a Y  - = u, 

Here u and v are the x- and y-components of the fluid velocity respectively. Then the governing 
equation to be solved is given by 

Q 2 + = 0  inQ, (3) 
where Q denotes the solution domain. The boundary conditions are as follows:6 

where rl, T2 and r3 represent the free surface, the upper surface of the piston and the remaining 
part of the boundary respectively, D/Dt denotes Lagrangian time differentiation, a/8n denotes 
differentiation in the direction of the outward normal n on the boundary, g is the acceleration due 
to gravity and (t, q) are the co-ordinates of fluid particles on the free surface. In the present 
method a finite number of particles distributed along the free surface are moved every time step in 
a Lagrangian manner to simulate the change of the free surface profile. Condition (5 )  expresses the 
property that a fluid particle remains on the free surface during subsequent fluid motions once it 
lies on the free surface. The unknown quantities of the problem are t, q and 4. 

When calculations are started from a stationary condition of the fluid, the initial conditions are 
given as follows: 

at t = 0. 
+ = q = O  
< specified 

SOLUTION PROCEDURE 

Consider two successive time instants t and t + At and suppose that a fluid particle on the free 
surface moves from the position (<, q) to the position (el, q') during the time interval A t  as shown 
in Figure 2. The kinematic condition ( 5 )  ensures that the new position ((', q') also lies on the free 
surface. Then 5' and q' are expanded into Taylor series about (6 q, t )  and truncated at the term of 
nth-order derivatives as 

(At)" D"t . . .  + - - -  D t  (At)2 D2< (At)3 D35 + 

< ' x  5 +At-+-- +-- Dt 2! Dt2 3! Dt3 n! Dt"' 

(At)" D"q + . . .  +-- Dq (At)2 D2q (At)' D3q 
q ' = q  + A t - + - - - + - -  

Dt 2! Dt2 3!  Dt3 n! Dt"' 

(9) 
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oLz 
Figure 2. Movement of a fluid particle on the free surface 

Let 4 and 4’ denote the values of the velocity potential at ( r ,  v ] )  and (c’, v ] ’ )  respectively. Then, 
similarly, @ can be approximated as follows: 

(11) 
(At)” Dm4 + . . .  +--. 4 ’ ~  4 + At ____ + -- ~ + ~ __ 

D4 (At)’ D24 (At)3 D34 
Dt 2 !  Dt2 3! D t 3  n !  Dt” 

If each term of these Taylor series is evaluated, the new position of the free surface and the new 
value of the velocity potential on the free surface can be found. Now our attention is focused on 
the way to evaluate Lagrangian time derivatives of 5, v]  and 4 at time t .  

First-order Lagrangian derivatives 

In the first stage of the computation we solve the boundary value problem 

where the specified potential value 6 is computed at the previous time step. The boundary 
element method is used to solve the problem and equations (12H15) are transformed into the 
following boundary integral equation via Green’s second identity: 

where r is the distance between a source point P on the boundary and an observation point Q 
which also lies on the boundary. If P is on a smooth part of the boundary the coefficient ap takes 
the value n, and it is the interior angle between two tangents at  P if P lies on a corner point. 4p 
denotes the value of the velocity potential at  P. The solution of the integral equation (16) yields 
d4 /dn  on the free surface. Since the potential values are already known along the free surface, the 
tangential derivative d 4 / a s  can be calculated by numerical differentiation. (The formulae for the 
numerical differentiation and their derivation are described in the Appendix.) Then D ( / D t  and 
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Dq/Dt are evaluated by 

where 1 and m are the x- and y-components of the unit normal vector drawn outwardly on the free 
surface. Db/Dt is calculated using the dynamic condition (4) as 

D4 - = 4 (u’ + U Z )  - gq. 
Dt 

Second-order Lagrangian derivatives 

The second-order Lagrangian derivative D’ 5/Dt2, for example, is expressed as 

(20) 
D Z ~  DU a u  au  a u  a4t au  au + u - +  u - = - +  u -+  v - - ,  
~t~ - Dt at ax ay ax ax ay - 

where 4t = &$/at. To evaluate D2t/Dt2 we must know the first-order Eulerian time derivative 4, 
of the velocity potential. 

By differentiating the Laplace equation (3) with respect to time, it can be easily found that bt 
satisfies the Laplace equation as 4 does. Then we solve the following boundary value problem: 

V’$, = 0 in Q, (21) 

D 4  4 =-- ‘ Dt (u’ + v 2 )  on rl, (22) 

d’Yp +--) dYp au on r2, 
dt’ dt ax 

It should be noted that the right-hand side of equation (22) is already known and that condition 
(22) gives Dirichlet data. The boundary condition (23) is derived by differentiating equation (6) 
with respect to time. Since the boundary T2 is the moving one with velocity dY,/dt, the 
Lagrangian differentiation should be done using the differential operator defined by 

a dy,  a 
at ( dt ) ay’ - +  __ - 

The boundary element solution for this problem gives a#,/an on the free surface. The tangential 
derivative a4,/as is computed by numerical differentiation. These spatial derivatives are then 
transformed as 
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On the other hand, the spatial derivatives of the velocity components are calculated by numerical 
differentiation as shown in the Appendix. Thus D 2 t / D t 2  is evaluated with expression (20). 
D 2 y / D t Z  is also calculated in the same way. 

The second-order Lagrangian derivative of 4 is evaluated with 

D 2 4  Du Dv 
Dt2 Dt  Dt  
-- - u - + v - - gv, 

which is given by differentiating the dynamic boundary condition (4) with respect to time. 

Higher-order Lagrangian derivatives 

to the order of n. In the present formulation n is taken as n = 3. 
We proceed in the same way to calculate higher-order Lagrangian derivatives oft, y~ and 4 up 

BOUNDARY ELEMENT METHOD 

As mentioned in the previous section, the boundary value problems of 4 and its Eulerian time 
derivatives are solved by the boundary element method. The boundary element formulation 
starts from the derivation of integral equations of the type of equation (16). 

The boundary of the solution domain is divided into a large number of line elements. In each 
element, CD and (0 is 4, +t or a higher-order Eulerian time derivative of 4) are approx- 
imated by linear shape functions. Thus the integral equation is reduced to a set of linear algebraic 
equations with the unknown variables dCD/dn on the free surface and CD on the remaining part of 
the boundary. 

We mention here the treatment of nodal points at the intersections of rl and r3. These 
intersections are the so-called corner points where the value of a@/& is discontinuous and two 
values of aCD/dn exist. Then, in the present boundary element formulation, double nodes are laid 
at the corner point as shown in Figure 3, where node A belongs to the free surface and node B 
belongs to the solid wall. At node A, a@/dn, is assigned and i s  treated as an unknown quantity, 
while d@/dn, is assigned at node B and is known to vanish from the boundary condition (7). On 
the other hand, CD itself should be continuous at that intersection. Therefore a subsidiary 
condition 

CDA = CD, 
must be considered when the boundary integral equations are solved. 

J n2 

free surface 
0 

solid wall 

Figure 3. Overlapped nodes at a corner point 
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A set of linear algebraic equations thus derived is solved by the LU decomposition method. In 
order to determine the values of 0, several sets of equations are to be solved per time step. 
However, since they are assembled at the same time instant and for the same free surface profile, 
they have the same coefficient matrix. Therefore, once the coefficient matrix is decomposed into a 
lower and an upper triangular matrix, we have only to do the forward and backward sub- 
stitutions for individual solutions of the equations. 

It is emphasized that the present boundary element formulation is different from that of Dold et 
aL7 Their method is constructed for the special purpose of the numerical simulation of wave- 
breaking phenomena. By assuming the periodicity of water waves and using the principle of 
reflection, they eliminated unknown variables on the parts of the boundary except the free surface 
when formulating the problem mathematically. Their derived integral equation consists only of 
the boundary integral along the free surface. The resulting system of linear algebraic equations is 
easy to solve by iterative methods, and less computing time may be required than in LU 
decomposition or matrix inversion. The applicable field of their method is, however, greatly 
restricted. Furthermore, the complex variable boundary element method used by them cannot be 
extended to three-dimensional versions. This is the main reason why the boundary element 
method based on Green's identity has been adopted in the present method. 

VARIABLE TIME-STEPPING TECHNIQUE 

The size of the time increment is calculated every time step by controlling the remainder of 
truncated Taylor series.' A Taylor expansion of a functionf(t) is expressed as 

(At)2 (At)3 f ( t  + A t )  = f ( t )  + A t f ' ( t )  + - f " ( t )  + -f"'(t) + . . . . 
2! 3! 

When this Taylor series is truncated as 

f ( t  + A t )  zf( t )  + A t f ' ( t )  + - f " ( t )  (At)2 + . . . + - (At)'f(n'(t), 
2! n! 

the remainder is given by 

(At)'+l 
(n + l)! (remainder) = ___ f("+ l)(z), t < < t + At. 

The time increment At is calculated so that the remainder (30) should be equal to some small error 
limit E. For a given value of E, At is determined by 

f("+')(z) is approximated as 

where N is the total number of nodes on the free surface. The Lagrangian time derivatives up to 
the nth order are computed by the procedure explained previously. Then the (n + 1)th-order 
Lagrangian derivatives are evaluated using appropriate backward finite difference schemes with 
the nth-order derivatives. Only at the first time step, namely at t = 0, are the (n + 1)th-order 
Lagrangian derivatives in (32) replaced by the nth-order Lagrangian derivatives, because no 
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backward finite difference schemes are available at  t = 0. From such an approximation, it follows 
that Taylor series truncated at  the term of (n - 1)th-order derivatives are used to calculate the 
values of c, q and (b at t = At. 

CHECKS O F  COMPUTATIONAL ACCURACY 

Figure 1 shows a simplified model of the experimental equipment used by Hammack.8 By 
comparing the numerical results with the experimental data obtained by Hammack, the com- 
putational accuracy of the present method is examined. 

Computations are carried out for three piston motions with different ascending velocities: 
impulsive motion, transitional motion and creeping motion. 

The size of the water tank and the values of the parameters for the computations are 
summarized in Table I. All the quantities used in the present computations are non-dimensiona- 
lized with the acceleration due to gravity, g, and the uniform depth of water, h. In the impulsive 
and transitional motions, a finer element discretization has been done along the centreline of the 
tank than in the creeping motion. 

Figures 4-6 show the time histories of the free surface displacement at the station x / h  = 0. The 
present numerical results are denoted by open circles and the experimental data are denoted by 
solid lines. The computed results by the linear theory of Hammack are also shown by broken 
lines. Agreement between the computed and experimental values is good, and the difference 

Table I. Parameters for computations 

Number of elements 

Impulsive 40.0 12.2 100 20 61 10-5 0.2 1.305 
Transitional 40.0 12.2 100 20 61 lo-’ 0.1 0.23 1 
Creeping 100.0 12.2 100 10 37 10-5 0.3 0.010 

x10-2 

0 Present method 
25 1 - Experinleiit (Hammack, 1973) 

- - - -  Linear theory (Hammack, 1973) 
20 

15 c 
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10 

5 

0 
0 

- 5  

Figure 4. Time histories of the free surface displacement at the station x / h  = 0 in the impulsive motion of the piston 
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Figure 5. Time histories of the free surface displacement at the station x / h  = 0 in the transitional motion of the piston 
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Figure 6. Time histories of the free surface displacement at the station x / h  = 0 in the creeping motion of the piston 

between the present numerical results and those of the linear theory is clear. In Figure6 the 
plotting of the numerical results has been terminated at t J ( g / h )  = 169.6, because the influence of 
a reflecting wave from the right wall of the tank has appeared at the station x/h = 0. 

Another check of accuracy has been done by calculating, at each time step, 

( 3 3 )  

(34) 

and 

H = I, qdx - bY,(t). 
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The quantity Q represents the total outflow across the boundary r( = r, + Tz + r3). By 
applying Gaussian divergence theorem to equation (33), it is found that Q is expressed as 

Q = S JQ v24dxdy (35) 

and that Q should vanish. The quantity H is related to the conservation of the mass of fluid and 
should apparently vanish. The numerical values of Q and H have been obtained by changing 
equations (33) and (34) into 

and integrating them by the trapezoidal rule. Here [ is a supplementary variable as given in the 
Appendix. 

The non-dimensional forms of Q and H are defined as 

where an asterisk denotes a non-dimensional quantity. The maximum and minimum values of 
IQ*] and ) H * ]  are tabulated in Table 11. In the creeping motion, these values were computed in 
the interval between t ,/(g/h) = 0 and t,/(g/h) = 169.6 for the reason mentioned above. 

In Table 111 the size of the time increment is listed. Although the reduction of E results in smaller 
size of time increment, it has little influence on the values of Q and H .  To reduce Q and H ,  finer 
discretizations of the boundary may be needed. 

All the computations have been carried out on a minicomputer, Celerity C-1260, which is 
comparable to the VAX 8600. The CPU time is about 90 min per 100 time steps in the case of the 
transitional motion. The case of the transitional motion has also been analysed in Reference 6. 
Comparing the present method with that of Reference 6,  the former requires only one-third of the 
computing time of the latter. The use of the variable time-stepping method makes a great 
contribution to the increase in the computing speed of the present method. 

Table 11. Checks of computational accuracy 

I Q* lmax IQ*lmin I H *  Imax I H *  lmin Motion 

Impulsive 1.4 10-4 8.3 5.6 x 9.2 x 
Transitional 4.6 x 10-5 3.6 x 1 0 - 7  1.0 x 10-3 2.8 x 10-6 
Creeping 8.0 x 1.9 x lo-’ 6.8 x 3.1 x 

Impulsive 
Transitional 
Creeping 

0.338 
0.564 
1.035 

0.047 
0 178 
0.373 

0.294 
0.508 
0.871 
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CONCLUDING REMARKS 

A numerical method has been developed for the analysis of unsteady free surface flow problems 
which are formulated mathematically on the basis of the potential flow theory. The algorithm is 
very simple. Throughout the computations it has been found that the combined use of a Taylor 
series expansion in time with a variable time-stepping technique makes the present method 
accurate and numerically stable. These facts encourage us to extend the present method for the 
analysis of three-dimensional problems. 
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APPENDIX: NUMERICAL DIFFERENTIATION 

The derivations of the formulae used- in the numerical differentiation are briefly described. ’, 
Since the nodal points on the free surface are moved every time step in a Lagrangian manner, 

they are not necessarily spaced equally along the free surface. Thus it will be convenient to map 
the free surface onto an auxiliary axis on which the nodal points are spaced equally. Let [ denote 
the nodal number along the free surface and consider [ as a continuous real variable. Then it 
follows that the nodal points on the free surface are spaced equally along the [-axis (Figure 7). 
Since x, y, u and v can be considered as functions of [ on the [-axis, the relations 

free surface 

Figure 7. Mapping of the free surface onto the C-axis 
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exist. Applying the equation of continuity 

au av 
ax ay 
- + - = o  

and the irrotational condition 

av au 
ax ay 
_---  -0 

to equations (38) and (39) yields 

The solution of this set of equations for au/ax and avlax gives 

where 

D = ($y + ($)2. 

(44) 

(45) 

Then, if the derivatives of x, y, u and v with respect to ( can be computed, we can evaluate aulax 
and &/ax. Once au/dx and dvlax are computed, aulay and auldy are given using the relations 
(40) and (41). 

The differentiation along the (-axis is implemented approximately by appropriate finite 
difference schemes. In the present method the following central difference formula is used:" 

f -  2 - 8f- 1 + 8f i  - f 2  f '((0) = 9 12h (47) 

Here h represents the interval between two neighbouring nodes on the (-axis and is equal to unity. 
At both ends of the free surface the backward difference formula 

25f, - 48f-1 + 36f-2 - 16f-3 + 3f-4 
12h f '((0) = 3 (49) 
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and the forward difference formula 

- 25f, + 48f, - 36f, + 16f, - 3f4 
12h f‘(Co)X 

L = f K o  + kh) (k = 1,2,3,4), (52)  
are used. 

Next the tangential derivative of 4 can be calculated in a similar way. It is expressed as’ 

and ds/d[ is written as 

* a = J[($)’ + ($)’I. (54) 

Thus a+/ds can be evaluated by differentiating x, y and + with respect to [ by the finite difference 
schemes mentioned above. 
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